Electric Motors and Motion Control Ara Knaian

Motors

- Motors convert electrical energy to mechanical energy
- Motors make things move

How a DC Motor Works

UF Phys. 3054

$\overline{F} = I\overline{L} \times \overline{B}$

How a DC Motor Works

Motor Modeling

- Is this motor big enough?
- Will this thing move?
- What gear ratio should I use?
- How big should my power supply be?
- How hot will it get?
- How fast can I machine?
- What materials can I machine?

Motor Modeling

$\overline{F} = I\overline{L} \times \overline{B}$

Motor Modeling

 $VI \cong I^2 R + \tau \omega$ $\tau = K_m I$

Torque is proportional to current

In an ideal motor (R = 0), speed is proportional to voltage

At constant voltage, speed goes down as torque goes up

Pittman Motor Data Sheet

Pittman Motor Data Sheet

F

r

a

ω

Bidirectional Motor Drive: H-Bridge

Speed Control: PWM

Like Low Voltage (slow)

Like High Voltage (fast)

Rotary Shaft Encoder

Motor Control: Linear Servo Loop

Practical Motor Controller Block Diagram

